

Performance Evaluation on of Esco "Tri Gas" CelCulture[®] CO₂ Incubator By Dian Susanti and Rosi Destiani

I. Introduction

Physiological *in vivo* oxygen concentrations can range from 1% to 13%, yet most research in cell cultures is done at ambient 21% O_2 . Scientists in a variety of emerging fields are coming to understand the value of O_2 control in addition to CO_2 and temperature control in their daily applications. The advantage of embryo culture in a Trigas incubator is to achieve a relatively hypoxic environment (5% O_2) for embryo and cell culture.

Esco CelCulture[®] CO₂ incubator is equipped with tri –gas (O₂, CO₂, N₂) to meet major design of having the overall system controls gas, temperature, and humidity. Tri-gas is definitely better. Tri-gas mix can be achieved by using either a pre-mixed gas supplied by the distributor or by using CO₂ and N₂ gases. Nitrogen gas suppresses the ambient oxygen for below ambient cell culture requirement over a nominal range from 2%-20% oxygen.

The aim of this study is to evaluate the performance of Esco's Tri-gas Incubator using N_2 gas injection and monitoring the recovery time for %RH, %CO₂, and %O₂ during the test.

II. Method

Procedure

For the overall test, two units of CO_2 Incubator P16 and P99 were used on this experiment. These two units fitted with the RH, CO_2 , and O_2 sensor to monitor the value during the test. Data recorded using Vaisala probe. O_2 tri-gas test using N_2 gas injection to reduce the oxygen concentration.

2.1 Performance testing

For this test, two methods were established to evaluate the pattern of RH, CO_2 , and O_2 to reach the set points. N_2 and CO_2 gases are injected into the chamber of the CO_2 incubator during its first operation. Secondly, N_2 gas is injected into the chamber of the CO_2 incubator when it already reaches the set point for RH (95%) and CO_2 (5%). Both gases will operate under 15 Psi.

2.2 Recovery time testing

The effectiveness of the system will be verified using the recovery time of RH, CO_2 and O_2 level to reach the set points. To demonstrate this, reading will take for the three parameters. Reading should be taken at the interval of 30 seconds, 1 min, 2 mins, 3 mins, and 10 mins subsequent to the door opening and record the recovery time at each interval time. The data obtained will be reflected.

III. Result

3.1 Performance testing

The % RH level will decrease the impact of the N_2 gas injection into the CO_2 incubator chamber. But, it will be back to normal when it reaches the set point value several times. Detailed results are shown below.

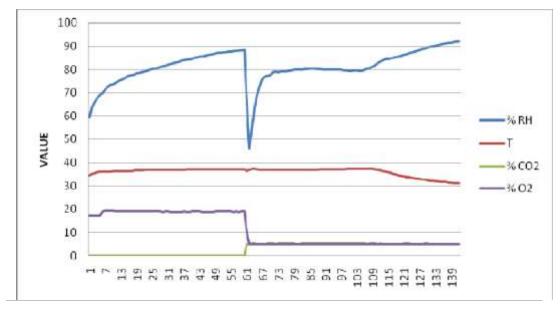


Figure 1. Performance on P16 with N₂ gas injection when CO₂ Incubator reaches humidity of 90%

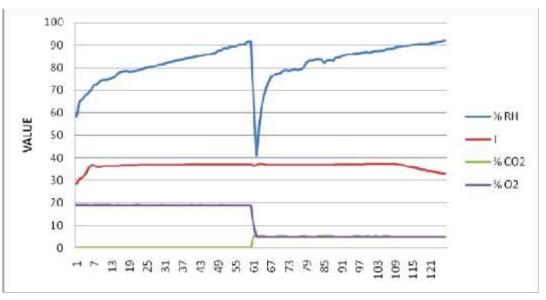


Figure 2. Performance on P99 with N_2 gas injection when CO_2 Incubator reaches humidity of 90%

in @esco

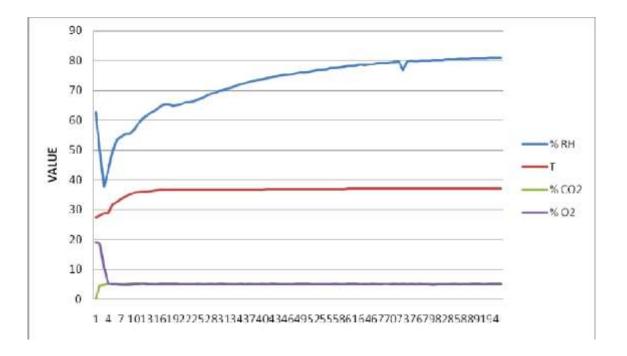


Figure 3. Performance on P19 with N₂ gas injection on the first operation of the CO₂ Incubator

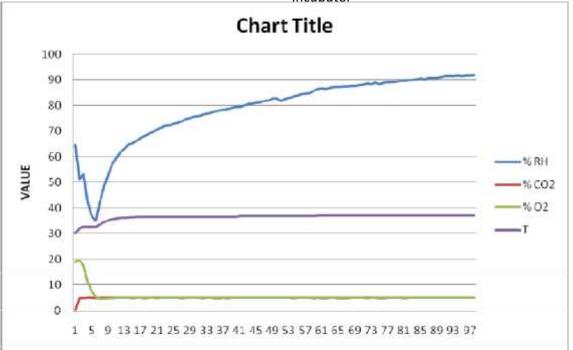


Figure 4. Performance on P99 with N_2 gas injection on the first operation of the CO_2 Incubator

💟 @escolifesci

in @esco

Observation

- 1. In the first experiment, N_2 gas injected when the incubator reaches its humidity set point, both data obtained from two incubator show that the level of humidity will decrease significantly. It drops almost<u>a half percent</u> from the set point.
- 2. From figure 1 and figure 2, CO_2 Incubator has the ability to reach back to its humidity set point at the average of <u>4 hours</u> after N₂ gas injection.
- 3. From the above figure, it shows that O₂, and CO₂ concentrations were stable.

3.2 Recovery time Test

Table 1 Recovery time on P16

Door Opening	Recovery time (minutes)		
(minutes)	% RH	% CO ₂	% O ₂
0.5	300	3	11
1	300	3	11
1.5	300	3	11
2	300	3	11
2.5	300	3	11
3	300	3	11
3.5	300	3	11
4	300	3	11
4.5	300	3	11
5	300	3	11

Table 2 Recovery time on P99

	Recovery time (minutes)		
Door opening (minutes)	% RH	% CO ₂	% O2
0.5	240	3	10
1	240	3	10
1.5	240	3	10
2	240	3	10
2.5	240	3	10
3	240	3	10
3.5	240	3	10
4	240	3	10
4.5	240	3	10
5	240	3	10

Observation

- 1. From the above tables, the CO₂ incubator can reach to its set point value.
- 2. Overall data shows that there are no significant differences for the recovery time of these two units to reach the set point for each door opening time. CO₂ concentration will be back to normal around 3 minutes, while the O₂ concentration takes more time to be back to normal set point i.e. around 11 minutes.

Conclusion

Esco's "Tri-gas" CO_2 incubator can reach the O_2 set point value with a recovery time of 11 minutes. Also, it is more efficient to inject N_2 gas first during the first operation of the CO_2 incubator.

